

Challenges and opportunities for pump-probe spectroscopy at synchrotron radiation sources

Fausto Sirotti (PMC, Polytechnique & SOLEIL- Synchrotron)

TREES, Trieste- December 3rd 2018

Summary

- Which pump which probe
- Examples
 - Magnetization dynamics
 - In real and reciprocal space
 - Electronic structure & phase transition
 - in FeRh and half metal manganite
- Discussion & Conclusion

Which Pump, which probe

Exciting Pump:

- Magnetic pulse
- Electric/current pulse
- Laser pulse

Measuring probe:

- Synchrotron Pulse
- Laser Pulse
- HHG
- FEL

Repetition rate Energy/pulse

Repetition rate Photons/pulse

Excitation is essential to define the experiment Changing excitation is like changing the sample

Short pulses: slicing <-> low alpha

Slicing photon flux ? $10^6 - 10^7$?

J. Synchrotron Rad. (2017). 24, 886–897

- Total flux
- Repetition rate

Synchrotron radiation Time structure

Synchrotron pulse duration: 50 ps High repetition rate.

Magnetization Dynamics

- J. Vogel Institut Néel
- V. Uhlir
- S. Pizzini
- N. Rougemaille
- L. Ranno
- O. Fruchart
- V. Cros
- E. Jimenez
- J. Camarero
- C. Tieg

CNRS/Thales

Universidad Autonoma de Madrid, ESRF

> Phys. Rev. B, 2010, 81(22),224418 Phys. Rev. B, 2011, 83(2),020406 Phys. Rev. Lett., 2012, 108(24),247202

Synchrotron radiation Time structure

Synchrotron pulse duration: 50 ps High repetition rate: 6 MHz ,

Magnetization Dynamics

Magnetization Dynamics

Electron microscopy with polarized X-rays

Study of laser excitations in nanostructures: Electron transport, heat transport

Imaging secondary electrons XMCD contrast – element specific

Could be done in low alpha mode, Slicing only with high repetition rate

Samples are the challenge

Phys. Rev. B, 2011, 83(2),020406

Magnetization Dynamics

ps Time Resolved Resonant Magnetic Scattering Using SOLEIL's Low-Alpha Mode

Synchrotron SOLEIL (SEXTANTS) Horia Popescu, Victor Lopez-Flores, Maurizio Sacchi, Nicolas Jaouen

Synchrotron SOLEIL (TEMPO) Mathieu Silly, Christian Chauvet, Fausto Sirotti

Philippe Hollander

LCPMR, Paris VI

B. Tudu, R. Delaunay, J. Lüning

Synchrotron SOLEIL (Sources) Marie-Agnès Tordeux, Amor Nadji

ELETTRA (Detectors and Instrumentation *al attrin* Luigi Stebel, Rudi Sergo, Giuseppe Cautero

IPCMS, Strasbourg **Christine Boeglin**

LPS, Orsay Gregory Malinowski

SPINTEC, Grenoble Marina Tortarolo

CSNSM, Orsay Cédric Baumier, F. Fortuna

Specificities TEMPO

2D time resolved detector (Elettra)

MCP

Single count detector :

4 Mcounts/s

27 ps temporal resolution

60 µm spatial resolution

G. Cautero et al. / Nuclear Instruments and Methods in Physics Research A 595 (2008) 447–459 :

Low-Alpha time hystogram as seen by the detector

Magnetization dynamics using small angle x-rays scattering (SAXS)

Resonant (Co L₃) magnetic small angle scattering pattern

J. Synchrotron Rad. (2017). 24, 886–897

Low-Alpha multi-bunch: fast (ps) and slow (ns) dynamics

Time resolved resonant magnetic scattering

Study of magnetization dynamics in nanostructures:

Coherent imaging XMCD contrast – element specific Low alpha mode, Slicing FEL - collaborations Federico Pressacco, Vojtech Uhlır, Matteo Gatti, Alessandro Nicolaou, Azzedine Bendounan, Jon Ander Arregi, Sheena K. K. Patel, Eric E. Fullerton, Damjan Krizmancic, and Fausto Sirotti

The phase transition in FeRh

In FeRh the transition involves both the Magnetic Order and the Lattice Structure;

Below T _c	Above T _c
$Fe=\pm 3.3 \mu_B$	$Fe=3.1\mu_B$
$Rh=0\mu_B$	$Rh=0.9\mu_B$

The volume is expanded of about 1% bulk samples or in thick films;

- · Isotropically in bulk or in thick films;
- Along the out of plane direction for thin films

Special Time resolved detector

2D detector

0*r* 27 ps temporal resolution *Electrons cascade from Micro channel plate* 60 μm spatial resolution

L. Stebel R. Sergo

Elettra

P. Pittana

G. Cautero

research papers

4 Mcounts/s

Journal of

Synchrotron Radiation

ISSN 0909-0495

Received 2 March 2010 Accepted 13 December 2010

Time-resolved photoelectron spectroscopy using synchrotron radiation time structure

N. Bergeard,^a M. G. Silly,^a D. Krizmancic,^b C. Chauvet,^a M. Guzzo,^{a,c} J. P. Ricaud,^a M. Izquierdo,^a L. Stebel,^d P. Pittana,^d R. Sergo,^d G. Cautero,^d G. Dufour,^e F. Rochet^e and F. Sirotti^a*

Journal of Synchrotron Radiation, 2011, 18(2): 245-250

Journal of Synchrotron Radiation, 2011, 18(2): 245-250

2

FeRh: magnetism and electronic structure

F. Pressacco, M. Gatti et al. Scientific Reports, 2016, 6 : art.n° 22383

Shape of band structure well characterize the magnetic phase

FeRh: magnetism and electronic structure

FeRh: magnetism and electronic structure

Valence Band photoemission

Electronic & magnetic properties

Study of recovery process. Preparation of tools for FEL & HHG Studies motivated by pump/probe 50 ps & Low alpha mode Synchrotron operation needed

FEL & HHG

Magnetization dynamics of half-metallic manganite

T. Pincelli, R. Cucini, A. Verna, F. Borgatti, M. Oura, K. Tamasaku, H. Osawa, T.L. Lee, C. Schlueter, S. Gunther, C.H. Back, M. Dell'Angela, P. Orgiani , A. Petrov, F. Sirotti, R. Ciprian, V. A. Dediu, I. Bergenti, P. Graziosi, F. Miletto Granozio, Y.Tanaka, M. Taguchi, H. Daimon, J. Fujii, G. Rossi, and G. Panaccione

In a half-metallic system, the direct spin-electron de-excitation channel is almost suppressed due to the absence of available spin-flip processes.

C.

Temperature

-2

Magnetization dynamics of halfmetallic manganite

Pump probe with hard X-rays

HAXPES Band photoemission

Electronic & magnetic properties

Studies motivated by pump/probe experiments

50 ps & Low alpha mode Synchrotron operation

FEL & HHG

Sprint

Conclusions

Physical processes are characterized by **pump** characteristics (pulse duration, energy, polarization) The pump laser is important in defining the initial state

- System dynamics can then be followed on different time scales Synchrotron are complementary to FEL, HHG and laser

- Important to make the link between time scales and overlap time intervals of excitation and decay
- better sample characterization on synchrotrons

Strong and regular interaction with fs sources

Physics should drive collaborations to apply the most adapted source

Conclusions

Operation:

Ideally pump probe and normal synchrotron activity should be possible on demand -> Hybrid mode operation of storage rings.

Time resolved detection x-ray choppers to switch between normal and time resolved mode

Short (few days) and rare (every six months) beamtime period allocated for special operating modes are not effective for scientific activity development

Conclusion

- <u>TR-X-PEEM Electron microscopy with polarized X-rays</u>
- Time resolved resonant magnetic scattering
- <u>ARPES and HAXPES can be used to study laser excited phase</u> <u>transitions in pump/probe experiments</u>
- Electronic and magnetic properties measured at the same time
- Theoretical predictions are necessary to describe details of non equilibrium spectroscopy

Physics should drive collaborations to apply the most adapted source

Strong and regular interaction with fs sources

Thank you for your attention